MILE: A Multi-Level Framework for Scalable Graph Embedding

نویسندگان

  • Jiongqian Liang
  • Saket Gurukar
  • Srinivasan Parthasarathy
چکیده

Recently there has been a surge of interest in designing graph embedding methods. Few, if any, can scale to a large-sized graph with millions of nodes due to both computational complexity and memory requirements. In this paper, we relax this limitation by introducing the MultI-Level Embedding (MILE) framework – a generic methodology allowing contemporary graph embedding methods to scale to large graphs. MILE repeatedly coarsens the graph into smaller ones using a hybrid matching technique to maintain the backbone structure of the graph. It then applies existing embedding methods on the coarsest graph and refines the embeddings to the original graph through a novel graph convolution neural network that it learns. The proposed MILE framework is agnostic to the underlying graph embedding techniques and can be applied to many existing graph embedding methods without modifying them. We employ our framework on several popular graph embedding techniques and conduct embedding for real-world graphs. Experimental results on five large-scale datasets demonstrate that MILE significantly boosts the speed (order of magnitude) of graph embedding while also often generating embeddings of better quality for the task of node classification. MILE can comfortably scale to a graph with 9 million nodes and 40 million edges, on which existing methods run out of memory or take too long to compute on a modern workstation. ACM Reference Format: Jiongqian Liang, Saket Gurukar, and Srinivasan Parthasarathy. 2018. MILE: A Multi-Level Framework for Scalable Graph Embedding. In Proceedings of ACM conference (Conference’18). ACM, New York, NY, USA, 11 pages. https://doi.org/xxx

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic configuration and collaborative scheduling in supply chains based on scalable multi-agent architecture

Due to diversified and frequently changing demands from customers, technological advances and global competition, manufacturers rely on collaboration with their business partners to share costs, risks and expertise. How to take advantage of advancement of technologies to effectively support operations and create competitive advantage is critical for manufacturers to survive. To respond to these...

متن کامل

Intelligent scalable image watermarking robust against progressive DWT-based compression using genetic algorithms

Image watermarking refers to the process of embedding an authentication message, called watermark, into the host image to uniquely identify the ownership. In this paper a novel, intelligent, scalable, robust wavelet-based watermarking approach is proposed. The proposed approach employs a genetic algorithm to find nearly optimal positions to insert watermark. The embedding positions coded as chr...

متن کامل

Analogical Inference for Multi-relational Embeddings

Large-scale multi-relational embedding refers to the task of learning the latent representations for entities and relations in large knowledge graphs. An effective and scalable solution for this problem is crucial for the true success of knowledgebased inference in a broad range of applications. This paper proposes a novel framework for optimizing the latent representations with respect to the ...

متن کامل

Improvement of the E ciency of Genetic Algorithms for Scalable Parallel Graph Partitioning in a Multi-Level Framework

Parallel graph partitioning is a di cult issue, because the best sequential graph partitioning methods known to date are based on iterative local optimization algorithms that do not parallelize nor scale well. On the other hand, evolutionary algorithms are highly parallel and scalable, but converge very slowly as problem size increases. This paper presents methods that can be used to reduce pro...

متن کامل

Improvement of the Efficiency of Genetic Algorithms for Scalable Parallel Graph Partitioning in a Multi-level Framework

Parallel graph partitioning is a difficult issue, because the best sequential graph partitioning methods known to date are based on iterative local optimization algorithms that do not parallelize nor scale well. On the other hand, evolutionary algorithms are highly parallel and scalable, but converge very slowly as problem size increases. This paper presents methods that can be used to reduce p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1802.09612  شماره 

صفحات  -

تاریخ انتشار 2018